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LElTER TO THE EDITOR 

f-' series generated by using the branching process model 

T Kobayashi 
Department of Physics, Shiga University of Medical Science, Ohtsu, Shiga 520-21, Japan 

Received 18 January 1989 

Abstract. The branching process model was applied to generate the time series for a number 
of particles existing in a system and for counts recorded by a detector placed in the system. 
The power spectral density of the time series for the particle number is characterised by 
a f - 2  distribution, but the series made by time intervals between the successive counts has 
a f-' spectrum in a wide range of frequencies. 

Since the observation of the f-' power spectral density ( PSD) of shot noise by Johnson 
in 1925 [l], many works have been published to elucidate the phenomenon theoretically 
[2-61, where f represents the frequency of the phenomenon. Most of them, however, 
are insufficient to simulate the phenomenon with a f-' PSD covering a wide range of 
frequencies or are too sophisticated. The aim of the present letter is to give a model 
for generating a series in which PSD is characterised by a f-' distribution for a wide 
range of frequencies. 

When a PSD of events x( t )  behaves like f-' ( y  3 0), a large y results in a long-term 
correlation between the events because the intensities of fluctuations with low frequen- 
cies are relatively large compared with those with high frequencies. In the case that 
0 s  y < 1, the correlation function is given by 

O < y < l  {;L; y = o  
(x( t ) x (  t + 7 ) )  = 

which is independent of t, and the phenomenon is stationary. When y >  1, the 
correlation function depends on t and the non-stationary phenomenon occurs. There- 
fore, phenomena with a f - '  PSD are intermediate between stationary and non-stationary 
phenomena. 

The basic idea of the present work is to generate the series with a PSD behaving 
like f-' by using the branching process model. Here an event may have correlation 
with other events through the branching processes. The branching process model was 
first applied in 1874 to discuss the statistics of famity lines [7]. This problem has been 
developed by Kendall [8] and Bellman and Harris [9]. Many other applications of 
the branching process model have been made to the discussion 'of the fluctuation of 
the neutron number in a nuclear reactor [ 10,111 and that of electron number in solids 
[12], to the discussion of the particle spectra obtained by a high-energy collider [ 13,141, 
and so on. The details of the theory and variety of appIications are described in the 
standard texts [IS]. 
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For a system in which a particle may be subjected to capture and branching reactions, 
the probability Pk(n, t )  that n particles are found in the system at time t > 0 after we 
had k particles at t = 0 in the presence of random particle immigration with the rate 
S is given in [16] as 

n 

P,(n, t ) =  c Kj:-"Qb" 
i = O  

where K r - ' )  and Q;' are the contributions of the k particles in the system at t = 0 
and of the particles immigrating into the system during the time interval (0, t ) ,  respec- 
tively. They are given by equations (47), (48), (95) and (97) of [16] in the case of 
binary branching process. 

The Monte Carlo method using the probability described by ( 2 )  was applied to 
generate the time series for the number of existing particles in the system. The 
generation of the time series was started from the initial particle number No= 10. In 
order to avoid the possibility of the particle number increasing to infinity or dying out, 
the random immigration rate was chosen to be S = cyN, when p < 1 (subcritical case), 
considering the mean number of particles at t + cc is S / a ,  and S = 0 when p = 1 (critical 
case). Here a = &-A,  and p = h,/A, where A, and A, are the capture and branching 
rates, respectively, of a particle. If S > 0 in a critical system, the mean particle number 
will increase with time and diverge eventually to infinity. Three examples of the PSD 

of the times series generated by ( 2 )  are shown in figure 1. The PSD behaves like f-' 
when p = 1. In the case that p < 1, the PSD converges to a finite value in a low-frequency 
range although it retains the f-' form in the high-frequency range. The frequency 
range with the finite PSD value becomes wider with decreasing p. The f-' behaviour 
in the high-frequency range reflects the fact that the particle number at a time t ,  may 
have a determinant influence on the particle number at a following time t2 even when 
p = 0, i.e. the correlation between the particle numbers at t l  and t ,  is strong for a short 
time interval t2 - t l  and weak for a long time interval. The frequency range of the f-' 
behaviour due to the strong correlation increases with p and eventually covers the 
whole frequency range at p = 1. 

It was noticed in the above analysis that the PSD of time series described by the 
number of particles existing in a system behaves like f-' due to strong correlations 
between the particle numbers. However, we may expect a f-' behaviour (0 < y < 2 )  
for the series formed by time intervals between successive events as shown in figure 2 
where detections of a particle are considered. A detection may correlate with another 
detection through branching paths as the detections a, b and c in figure 2 .  The detection 
d has no correlation with a, b and c, because it appears in a branching chain originating 
from a particle immigration different from that for the detections a, b and c. The 
length of the path between the detections has stochastical correlation with the physical 
time interval. For example, the time interval between a and b is approximately 
equivalent to that between b and c, but, owing to the fact that the path between b and 
c is longer than that between a and b, the correlation between b and c may be far 
weaker than that between a and b. These considerations motivate an analysis of series 
formed by time intervals between successive detections of a particle. 

It is rather complicated even in the case of binary branching to give the general 
form of the probability P,(m, n, t )  that m counts have been recorded by a detector of 
absorption type placed in the system during the time interval (0, t )  and n particles are 
found in the system at time t > 0 after we had k particles at t = 0 [16]. In the case 
that m = 0, however, the probability Pk(O, n, t )  for binary branching is described closely 
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by a similar form to (2) as 
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Figure 1. The PSD of the time series for existing 
particle number in the cases that: ( a )  No = 10, p = 1 
and A,t=O.Ol; ( b )  No=lO, p=O.5 and ar=0.02;  
( c )  N o =  10, p = O  and a t  =0.01. In each case the 
broken line gives the f-* behaviour. The value of t 
is the same in ( b )  and (c ) .  

where 

and 
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c 
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Figure 2. Chains of the branching processes. The circles represent the particles immigrating 
randomly, boxes represent absorption of particles and the black spots represent detection 
of a particle. The paths (loci) of the particles are shown by full lines. The existing particle 
number at times f ,  and 1, are 8 and 13, respectively. 

where 

Here the parameters 8, 77 and 5 are defined as 

5 = $[P + 1 - J ( p  - 1 ) 2 + 4 ~ &  J 
in the case that p > 1 (subcritical case) where 

A d  
h a  

E = - .  (7) 

In (7), A, and A d  are the absorption and detection rates for a single particle, respec€ively, 
and A,= A a + A d  is the capture rate already described. In the case that p = 1 (critical 
case) 

The function Kio.n-i' in (3) is calculated from the following relations successively: 

(9b) 
The function p(O,1, 2 )  in (9) is the probability that the detector counts no particle 
during the time interval (0, t )  and 1 particles are found in the system at t >  0 when 

Kb0,n-O = 
S0.n - i * 
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one particle has immigrated at f = 0, and is expressed as 

I = O  

1 = 1  

1 2 2 .  

Using ( 2 )  and (3), the probability that the detector counts particles during the time 
interval (0, t )  and n particles are found in the system at t > 0 after we had k particles 
at t = 0 is given by 

When the probability given by ( 1 1 )  is much smaller than Pk(0, n, t ) ,  the probability 
recording more than two counts may be negligible and the following relation holds 
approximately: 

Pk(1, n, f ) + P k ( n ,  f ) -Pk(O,  n, f ) .  ( 12 )  

Whether a particle detection has occurred or not in a very short time interval was 
decided successively by using the Monte Carlo method with the probabilities described 
by ( 2 ) ,  (3) and (12) ,  from which another series (count series) formed by the time 
intervals between successive detections was obtained. The random immigration rate 
S was chosen in a similar way to the time series for the existing particle number. A 
part of the count series is shown in figure 3 in comparison with the series for particle 

.- 
+ 

U L L 
Count 

lo' I 

Time 

Figure 3. ( a )  Count series in the case that No = 10, p = 1, h,t = 0.0015 and E = 1.  ( b )  
Time series for existing particle number in the same case as figure l(a). 
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Figure 4. The PSD of the count series in the cases: 
( a )  that No= 10, p = 1, A,? =0.0015 and E = 1; ( b )  
that N , = l O , p = l ,  A,?=O.O002and ~ = l ;  ( c )  that 
No= 1, p = 1, A,! =0.0015 and E = 1. The broken 
lines give the f-' behaviour. The crosses represent 
the PSD calculated from the count series and the 
open diamonds are the PSD with the white noise 
subtracted. 

number. The count series has a more intermittent property than the other. The PSD 

of the count series in the case that p = 1 and E = 1 is given in figure 4(a, b ) .  In the 
high-frequency range, the PSD converges to a finite value which is the white noise 
component of the spectrum. In the figure is also shown the PSD with the white noise 
component subtracted. The f-' behaviour of the PSD is clearly evident in the figure 
over three decades of frequency. In order to examine the effect of the initial particle 
number No on the PSD, the count series in the case that No= 1 was generated, the PSD 
of which is shown in figure 4(c). No significant difference is noticed between the 
results shown in figure 4(a) and in figure 4(c). When E < 1, however, some effect of 
No on the PSD is noticed as shown in figure 5, where the PSD for No= 10 is smaller in 
a low-frequency range than that expected from af - '  distribution. When No# 1, there 
are several independent branching chains in the system originated by the different 
immigrating particles as shown schematically in figure 2, which may sometimes result 
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Figure 5. The PSD of the count series in the case that p = 1, A,t = 0.003, E = 0.5 and ( a )  
No = 1, ( b )  No = 10. The broken lines give the f-' behaviour. The data points are defined 
as in figure 4. 

in a particle detection without any correlation with other detections. While every 
capture event is detected in the case that E = 1, only some of them, i.e. A,/A, events 
in all the capture events, are detected when ~ < 1 .  Therefore the chance that two 
successive detections appear on the different branching chains increases with decreasing 
E. This fact results in the low PSD in the low-frequency range in figure 5 ( 6 ) .  

In figure 6 is shown the PSD for p < 1, which converges to a finite value in a 
low-frequency range due to a similar reason to that in the case of time series of particle 
number. 

10-6 
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Figure 6. The PSD of the count series in the case that No = 10, p = 0.9, at = 0.0003 and 
E = 1. The broken lines give thef- '  behaviour. The data points are defined as in figure 4. 
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The series with thef-’ PSD is obtained in the present simulation by paying attention 
to the time intervals of successive detections of a particle among the many existing 
particles. In the present work, we consider a particle detector of absorption type placed 
in the system. Other types of detectors, for instance a detector of the branching events, 
may be available for generating series with af-’  PSD. Therefore the conclusion obtained 
in the present work could probably be generalised to the conclusion that the f-’ PSD 
is obtained when intervals of successive events of a particular phenomenon are 
considered among many non-stationary phenomena with a f - z  PSD. 
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